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SYMBOLS 

C 

A -  cross-section area 

b = unit vector tangent to a circular parallel 

*H  = noriaal force coefficient B S/qtKr* 

local normal force coefficient * dC^/dix/dg) 

(p  *~ Pd)/oa = pressure coefficient 

axial force coefficient = A/oQ7tr' 

local axial force coefficient = dCg/d(x/dB) 

dieneter 

length 

free stream Mach number 

rate of nass flow 

normal force— that is, force normal to longitudinal axis of body 

unit vector normal tc surface, positive inward 

static pressure 

A pV1 *  dynamic pressure 

radius of normal curvature of a streamline 

d 

i 

N 

n 

p 

9 

R 

r -  radius 

•S = surface area 

t 

V 

X 

unit vector tanfent to a meridian 

velocity 

free stream velocity vector 

velocity of flow over the surface of the body 

axial force— that is, force in direction of longitudinal axis of 
body 

distance along longitudinal axis of body 

angle of attack 

A 



ß.- 
Y = 

*.- 

i) - 

e - 

e = 

p = 

P# ■ 

* 

angular poaition of a point on the surface of the body 

upper limit of integration around a circular parallel 

angle between body streamline and a meridian 

thickness of body layer 

angle between V0 and n 

angle between t and the longitudinal axis of the body 

semi-vertex angle of cone 

mass density 

density in body layer 

SUBSCRIPTS 

based on maximum body dimensions 

centrifugal force values 

converging or boattail section 

nose or diverging section 

refers to expansion flow 

impact values 

straight or cylindrical section 

based on free stream conditions 

J±. 
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SUMMART 
'. 

Th« importance of body lift lies in the fact that rt moderate 

angle» of attack and high Mach rmiber it can constitute an appreciable 

part of th« total lift of a winged mis3ile. In this paper an attempt 

has been made to analyze body lift in hypersonic flow by an approximate 

method and, together with a correlation of existing experimental data, 

to indicate the probable variation of body lift over a wide range of 

Mash msnber extending fron low supersonic to hypersonic. The »ethod 

of analysis of hypersonic flow over inclined bodies of revolution 

employed herein has been denoted as the hypersonic tOTr"'7UfllTt1i'i''fl' 

It is an improvement on the Newtonian corpuscular theory of aero- 

dynasties sine« it considers th« centrifugal forces resulting fron 

th« curved paths of the air particles in addition to the impact. 

(Newtonian) forcas. 

«Physical Scientist; now with th« Department of Defens«, Washington, 
as Scientific Warfare Advisor. 

' Aerodynamics Engineer 

Research Engineer 
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I*  INTRODUCTION 

In the field of guided nistsiles, investigations of possible performance 

will Inevitably lead to the considers* ion of flight at higher and high«," Mach 

ambers« Although 'or MM missile» the Mach mabcr it 0 - 5 might be considered 

as UM upper end of the speed range, for missiles of a different category the 

high «peed range of flight can conceivably extend to  - 20 or 25. At far 

at wing aerodynamics ia concerned, for supersonic speed« up to W 0 ■ 5 the ving 

lift Bay be obtained with satisfactory aacuracy by means of the linear!red 

supersonic wing theories, and at higher Mach numbers satisfactory results 

are obtained on the basis of two-dimensional gas dynamic: • However, this 

is not si all the case for strictly three-dimensional flow such as that 

over a yawed body r" revolution. In the usual application of linearised theories 

in two- and three-dimensional flow, wherein the higher order terms are neg- 

lected throughout for the sake of consistency, good solutions can be obtained 

for supersonic wings but not for body lift. Furthermore, these linearised 

solutions are subject to Mach number limitations. On the other hand, reliable 

theoretical lift results exist for cones at the present time.' '* '*' This 

yawed cone theory gives the exact initial normal force slope which is prac- 

tically independent of Mach number and in excellent agree»mt with the hyper- 

sonic approximation of the present paper as shovn by Fig. 1; agreement with 

some experimental data is shown in Fig. 2. Less is known about the lift of 

an ogive, however, and still less about the lift of a cylinder following 

either a cone or ogive. 

In view of the fact that at the higher Mach numbers body lift can con- 

stitute an appreciable part of the total lift of a winged missile, an attempt 

has been made to analyse body lift in hypersonic flow by an approximate method 

and, together with am analysis of existing experimental data, to indicate the 

probable variation of body lift over a wide range of Mach number extending from 

low supersonic to hypersonic. First, the Newtonian analysis is presented for 
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m  arbitrary inclined body of revolution. The resulting forces oc a coaii «ad 

cylinder are then given. Csrt HfVg*l force effects reduce the cylinder soraal 

force resulting fron the Newtonian analysis by approjdaatoly tea percent. 

Corresponding offoots for slender cones and ogives are loss for the «agio of 

attack range of gonere" interest ( • 2 ,) so for practical purposes the Newtonian 

analysis needs rv> »edification for predi cting the lift on the nose of a body of 

revolution at verj high Mach numbers. A qualitativ« discussion of the pressures 

on cone and cylinder ereaa situatad in regions of expam&on flow at hypereosic 

speeds is than presented. It carves as a guide for extending the results of the 

following correlation of experimental lift data through the hypersonic region to 

the hypersonic approximation values. A acre detailed discussion and analysis of 

centrifugal force effects are given in the Appendix. 
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II.      TOE NEWTONIAN (IMPACT) AHIODINAKIC FORCES 
ON A TAMED BOOT OP REVOLUTION 

In view of the general l*ek of exact gu dynamic results for three-dimen- 

sional flow it is important to rssliss that valuable results concerning the lift 

so a pointed bedy of revolution can b« obtained free the relatively sinple theory 

of Newtonian aerodynamics.    At high supersonic Mach numbers, particularly when the 

angle of attack is  »pprecUble, the gas pressure foroes on a body nay be approx- 

(3-5) batted 1P a staple auumer on the basis of the concept of Newtonian flow. 

In Newtonian flow it is assumed that the gas stream mmi^^An»  its speed and 

direction unchanged until it strikes the solid surface exposed to the flow» 

ishereupen it losen the component of momentuu normal to the surfaee and acrra» 

along the surface with the tangential component of momentum unchanged« Thus, 

im this concept the shook wave is assumed to lie on, or follow, the surface of 

the body» lbs Newtonian approximation doee not specify the pressure on surfaces 

which do not "see*1 the flow, that is, surfaces on whioh gas dynamicB would predict 

expansion flow. Per a flat plate Inclined at an an#le a to the flow, the New- 

tonian pressure coefficient on the lower surfaoe is 

C ■•£—£*« 2 .inJ a, (1) 

where tt  denotes free-stream pressure, xaiq0 = $P0^0
J la the free-etreem dynamic 

pressure« 

The ooneept of Newtonian flow can also be approaohed from the exact two- 

dimensional gas dynamical equations by letting *0  * T  .    Considering a flat plate 

Inclined to the flow, there will be ehook flow over the lower surfaoe and expansion 

flew over the upper surface.    As the Mach number increases, the shook wave approaches 

closer and closer to ths lower surfaoe (leading to increasing pressures) and the 

amount of expansion increases on the upper surfaoe (leading to decreasing pressures). 

In the limit when A/0 = -7 both the pressure and the pressure coefficient on the upper 
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ANGLE   OF  ATTACK,a 

NORMAL  FORCE COEFFICIENT FOR  CONES 

FIG. 2 

P-87-2 
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«urfeoo b«KM Mr», end UM p^eenr« eeeffiolant ou the Loner eerfaoe hniojmo '*' 

Cp « (Y * 0  »»>3a = C, (2) 

where r   ia tho ratio of the «pacific ho«to.    Since tht upper ourfee« pWWW coefficient 

1« MX«, Eq.(2) U «üLM the exproselon for th» normal foroe Mefflelaat C„.    It is toÜMfrd 

ia Hof. 4 that y -1 M#(, * a , which bring« Bq.(2) into ipi—t «tth the Newtonian reoolt, 

Bq.(l).    It i* worth pointing oat the'   for a giten Hooh matter «ad aaglo of attach the 

teaian thoorjr gL*«e oonaidorably bottor reenlta for a throo iMonniil'Wul body than for a 

HamMJomal body*    Thee, tbo Flewtonle« byporooala approximation for * polst«* body «f re/eel- 

utlen, avjh M a cone for example, 1« «arprl singly good tad Is mob bottor than for * boo» 

<k—gloaaJ fist plot«. 

A«      AIKTEAKI BOOT OF RXfULDTIOK 

To deriie tho Newtonian prsaenre forooo on a body of revolution of general shape, 

ooMldor tho body ahoun la Fig. 3 far ohloh tho longitudinal axis of symmetry la tho positive 

* -axis.    The angle of attaak     I* th« angl« la tho * i -plane between tho f roo-otrooa velocity 

veoter V 0 and tho positive i -aria.    Tbo y -axis ia porpondtcmlar to tho *; -plane, fernlag a 

right-handed system of coordinates.    Consider a differential oloaast of surf MO area .at 

aa arbitrary point    » on tho surf MO of tho body and lot *'#' ,;'   donoto a Local rtgjit mfjnmfs 

system of ooordlaatoo at tho point 0   t mob that *',?', *' are atralLai reepectively to * , > , z m 

Lot    ,      bo tho polar ooorvlnates la tho y i -plane of the point 0' on the surfaoe of the body. 

Let n   bo a unit TMter enlob ie aoraal to the snrfaoe ale—t dS and poeitiT» la the inward 

direction.    Let t be a «ait rMter which la tangent to tho elMoaat a. , forming ea angle   6 

«1th the poaitiw. -axis. 

Let o denote a «alt vMter ehioh together 

«4th n   and   t ferae a right-bended ooerdlnat« system, onoh that i ■ n <t.    For a body of re- 

velation, «Ideh la the only case to be considered hero»    t to tangent to a nerldlaa and there- 

fore UM la tho plane fomed by the lino    * and« * , and t> ia a tangent to a olroalar parallel 

end therefore lioo In tho/1 -plane.    The angular peeltiam <+: »he point      (and tho teeterr ) 

la gieun by the angle  p , ehioh ia neaeured positive oounteroleckwiM from the pooit.ive 

> -exla.    Tbo angle 6 betesem ' % and t it oonaidered positive ia tho 
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of * oomtoroloatadM tototion «boot *. 

UM rtljtlww bot*»« tho a, t, b •eorsHnaf «yaUn And tt* x ',y * , 

(Flf.%) art «It« by tho following tab!« of dirootlon ootino. 

Tmblo 1 

DIRECTION COSHES 

4- 

t     t cos 6 i     sin 6  cos  6         sin  B  sin  6 
■ i • • 

by  ; 0 i    — sin ß        cos ß 

ft  i sin 6 ! — cos 6 cos ß j — cos 6 sin ß 

V. cos a i        0          sin a 
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ELEMENT  OF 
SURFACE  dS 

TRANSVERSE  SECTION 
(VIEWED  FROM   STERN) 
r = RADIUS VECTOR  IN   yz 
PLANE   TO A POINT   ON 
THE    SURFACE 

n   = 

t   = 

<v- 
A- 

0, 

FREE-STREAM VELOCITY VECTOR 

UNIT VECTOR NORMAL TO A SURFACE ELEMENT 

UNIT VECTOR TANGENT  TO SURFACE ELEMENT   AND 
LYING IN A PLANE   CONTAINING  THE   x-AXIS 

MAXIMUM  DIAMETER  OF BODY 

TOTAL LENGTH OF BODY 

LENGTH OF DIVERGING PORTION OF BODY 

SEMI-VERTEX ANGLE   AT THE  NOSE 

BODY OF REVOLUTION INCLINED AT AN ANGLE TO 
NEWTONIAN  FLOW 

FI6.3 

P87-3 
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DIAGRAM OF DIRECTIONS AND  COMPONENTS 
AT A LOCAL  ELEMENT  OF   SURFACE   AREA 

FIG. 4 

P-87-4 
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The free-etrean velocity rector V9 liee in the*'*' -plan« «ad aekea «a angle a 

(angle of attack) with tha positive x' -axle.   Tha angle r,   between the velocity 

▼actor V0 tod tha noraal n   la giren by 

cos 7) 3 co*  (V#fn) * co« a sin 0 - «in a cos 6 sin ß. (3) 

.   * 

t:#           j 

■ 

■          V 
* 

*     -JP -* 
* 

• 

t 

<;1 r 
■ K 

f'H 

! 

w 

Tha condition for Newtonian flow la inpoeed by •pacifying thai tha gaa 

•treaa upon striking tha aurfaca loaaa all of ita aonentu» in tha diraetion noraal 

to tha aurfaca.    Sinca tha component of V0 noraal to tha aurfaca alaaantdS   1«  V§ <»«n 

and tha rata of aaaa flow atriking tha alaaant la peV§ coar,cLS , tha Mt« of changa of 

Boaantua on tha aurfaca alaaant in tha diraetion of ita noraal la 

V9 cos 7) X paF# cos  T^dS = p9V\ cosV^. ~"\     

Thua, tha axcaaa local praaaura forca <*f produead by tha aoaantaa changa ia 

•7 E (P ~ P0)äS - P9V\ cosar>iS = 2o0 cosJr)d5, 

and tha local praaaura coafflclant ia 

C    g * « 2 cos'f) = 2(cos  a sin 6 - sin  a cos 6 sin ß)2. 

U) 

(5) 

With raapaot to body axee, tha forcaa on tha body aay ba aaparatad Into a 

nonal forca iV   in tha  * -diraetion and an axial forca X   In tha * -diraetion, Fig« 3« 

For an alaaant of araa which "aaaan tha flow, tha forca eoaponanta art 

dh « -q0Cp  sin  ß  cos   « dS - -c0C r   sin  ß dß  d* 

•inca  «iS cos  8 c  r  dß dx„   snd 

(6) 

dX qfF  sin   6 dS m q6CDr   tsn  Ö dß rfx (7) 

Tha total fore« if obtained by integration over tha eurfaoe of tha body. In general 
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r- SHIELDED PORTION OF SURFACE 

DIAGRAM TO ILLUSTRATE   SHIELDED  PORTION  OF BODY 
IN  NEWTONIAN FLOW 

FIG. 5 
P-87-5 
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Cp     will ba a function of both *  end ß . 

•\ 
Considsratlon aust now b« giren to those portiora of the body surface which 

are inclined a*ay from th« free-etreaa direction V 0   , and which at/ therefore 

be thought of aa lying in the "shadow" of the free •tree«.    This situation is 

illustrated in Fig. 5*    As the flow proceeds orer ths body there will exist a 

boundary  ac determined by th« condition  C   = 0 (that is,   p - p0   )•    all of 

ths body surface situated upstream froa  ae is exposed to the oncoming flow which« 

upon striking the surface, undergoes coapression according to Eq.  (5).    All of 

ths body surface downstream froa  ac is in a region of expansion flow for which 

Eq.  (5) has no aeaning.    Along the boundary   ac th« tangent rector   t  and the free- 

st ream rector  V0both lie in the sane plane, the tangent plane, and consequently n 

andV0   are perpendicular.    This condition defines   ac , and, froa Eq«  (3)> l«ads 

to ths relation 

co«   r\m ~  eoa  a *»n  9 ~  «in  Ct cos  0  sin  ß    = 0, 

or (8) 
tan  6 

Sln   p       , 
"   tan   a 

where the aubecript  (    ) u refera to conditions along the boundary  ac which defines 

th« licit of th« compresaion flow area. 

For all tranarsrse aectiona (sections noraal to the  x -axis) froa the nose beck 

to the eection  a*> , the liaita of integration for  ß   a**e froa-n/2 to tn/2. 

Downatreaa froa the aectlon  ab the upper limit for  ß   »   £„ » mx9t correspond to ths 

points lying on ths boundary  ac and will be a function of   x    .    The point   c   , 

designated by* =  *u ,  is the laat point on the body to intercept any of the free- 

atreaa flow, and at thia point ß    =   - n /? -—see Fig.  5*    The extreae forward tip of 
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(3)        if x^x,^,...^^ are ^ sn» 

and x, ♦ Xj ♦•••♦ x , < 1, then 

^P*»1 (3)» by replacing Xp,x*,...,x , by -1, and x, by x, we obtain: 

(4) if x is in S , and x-(n-2) < 1, 

then fx(x) ♦ f2(-l) - fx(-l) + f2(x). 

Since XfeS implies that x-(n-2) < 1, and since, by condition (A) of the hypothesis, 

fj(-l) - f2(-l) - -1» we conclude fron (4) that, if x is in 3 , then f^x) - f ,(x): 

that is to say, that the functions f, and f.,  are identical. In similar fashion 

we see that f. and f. are identical, for all i and j. To simplify the notation, 

w» set f ■ f. ■ f.. We wish to show that, for every x in S , f(x) ■ x. 

Denote the interval 

-1 < x < 1 

by S. We shall show first that the conclusion of o.xr lerr.a holds for every x in 

S. First, since 0 is in 3 , we conclude tliat 
* n* 

(5) f(0) - 0. 

Now if x is any point of 3, then -x is a point of 3, and of course x ♦ -x - Oj 

thus, making use of (5), we see that, for every x in 3, 

(6) f(-x) - -f(x). 

Now fron (5) and (6) and condition (B) of the hypothesis, wo see that, if x, y, and 

x ♦ y are all in 3, then 

f(x ♦ y) - f(x) * f(y). 

Thus the hypothesis of Lama 2.6 is satisfied, so we concluue that there exists a 



a point«! body »ay be assumed to be conical over a short distance. Let the semi- 

vertex angle of the cone tip be denoted by 6y  . When a < 0 , the point a ie 

situated along the top meridian ( ß = rc/2) at the point «here 6 = a . When a £ 6 , 

the point a is situated at the beginning of the body ( %  = 0 ). Thus, in integret- 

ing Eqs. (6) and (7) two cases «ist be distinguished: (1) a < 6 , sons transverse 

sections are completely exposed to the flow with ß * n/2; (2) a > 6 , the trans- 

verse sections are only partially exposed to the flow with fc = sin''(tan 6/tan a ). 

Concerning the pressures on the shadowed or shielded portions of surface lying 

in expansion flow, which may be denoted by pf  , little can be said except that 

0 < pf < p0  . If it should be assumed that the flow is completely separated over 

the shielded regions, it would then be appropriate to use p = pQ,  which gires C  - o 

for the pressure coefficient. The general relation for the pressure coefficient is f 

• = Y*i (''.  " j 
(9) 

If it is assumed that separation does not occur, pt  ,/p0    becomes very small compared 

to unity as *<0   increases, and when *»0 = ■   , both p0  /p0    and (•      are zero.    Sine« 

C     = o   for either of these possible extremes, the shielded portions of the surface 

would contribute nothing to the integrals of Sqs.  (6) and (7). 

Thus, for true Newtonian conditions corresponding to H0 - », the total normal 

and axial force on the body obtained from (6) and (7) are» 

,\  = -o '•J.-fi s <?o r.     <-,'    »»"   ;•  "r   a* (10) 

and A  =  2qc   | I    *   Lpr   tan   t u£ <ii, (ID 

jThe valua y = 1.1» should be used for expansion flow. 
•Although no mention has been made of the base pressure coefficient, when **0 = <* 
it vanishes in the same fashion as (' 
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where C  is given by Eq. (5)« The Newtonian results (10) and (11) can be used at 

hypersonic approximations provided the Mach number is sufficiently large — *o = is » 

for example. When separation does not occur, C  increases with decreasing Mach 

number, and as lower Mach numbers are considered (*?0 < 10 or  15, for exaaple) it 

would be necessary to allow for values of C     different fron zero because the 

pressures on the expansion areas begin to hare an appreciable effect on the lift. On 

the other hand, for decreasing Mach numbers the value of C       given by Eq. (5) for 

the pressure on compression areas is less than the gas dynamic value and can therefore 

still be used as a conservative estimate for the compression flow. In this Mach 

number range an approximation to ehe aerodynamic forces could be written in the form 

'p. 

N K
 -2*» Jo*"JIv *in ß dß d* ~2<?» L 'L v SIB

 
ßdß äx' ei-) 

X =  2<?#J .  Cpr   tan  0 dß dz   + 2q. J     J       Cp   r   tin   0  dß  dx, (y) 
•-'   i P • 

where it is understood that C     may be put equal to zero without introducing appreciable 

error when the Mach number is high enough, or when separation occurs. 

Before obtaining the integrals (10) and (11) for a particular body shape, it is 

convenient to derive the general expressions for the local forces on a transverse 

section.    The normal force coefficient Cn      for the entire body is defined by 

Cn m V90
nra        » where dB = 2rf    is the maximum diameter of the body.    Axial distance 

along the   x-axis will be expressed in units of    x/aa    .    Considering only the first 

term in (10) corresponding to the surfaces in coapression flow, the local normal   force 

coefficient per unit length, C^      , is 

' S <(L)   <•*'.'   JL)   ~ * 7 
C     »in   [i  d£, 

> J'T (U) 
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where r is a function of    x only.    Introducing Cp 
= 2(cos a sin 6-»in a coi 6»in ß)a fro« 

(5)» the integration yields 

& = -— (/b.. +-\ sin 2a sin26 

(15) + cos ßj2 cos2a sin'e- j sin 2a sin 26 sin fa + } sm2a cos2e(sin2ßu r 2)]L, 

Introducing an axial force coefficient^ ~X/qf.rt
a    t the local axial force co- 

efficient per unit length is written 

C. m —* 

t 
=  -- -tan  *Jmrk-Cpdfa 

i n r, 

VV 
where G is a function of   jt only.    The integration yield» 

Cl  — tan   9 MJ (2 cos2 a sm2 6 + sin2 a cos2 0) 

+ cos f5,(sm 2a cos 26 - sin2 a cos2 6 sin $u) 

Distinction is now made between the two cases a < 0,  , and a > 6 

For this case B = n/2    and Eqs. (15) and (17) reduce to 

Case 1. a < 6t 

(16) 

(17) 

C'   = 2— sin   2a sin26 
r 

and * 

C;    = 4—tan   8[2   sm2   0 +  sin2   a(l  " 3  »in2   0)]. 

Case 2. a > 0» 
In this case, Eq.   (8), 

P. = 
and 

/tan   9N 
-sin" 'I       ; 

tan2   6 
cos {iB 

syl j—, 

(18) 

(19) 

tan*   a 

and Eqs.  (15) and  (17) reduce to 

c; 

c. = 

4 —     cos26   sin   2a 

K 

4 tan  0 
r „ 

2 / 1 
 tan  6  +   — cos   p„Uot   a   tan2   Ö +  2   tan   a) 
71 3n 

[2 sin3 Q + sin2 a(l - 3 .sin'O)] f — cos B  sin 2a sin 26 
n 4r: 

(20) 

(a) 
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Eouations (IB) through (?1) are the general expressions for the normal and 

axial forces on local transverse sections of the body, assuming C     ~ 0 on the 

shielded surfaces and neglecting centrifugal forces in the flow. The total normal 

and axial forces are obtained by integrating these local values over the length of 

the body. In order to apply the equations to a particular body of revolution, the 

profile of the body shape is introduced by specifying 0 as a function of %    . Of 

particular interest in missile aerodynamics is the body consisting of cone plus 

cylinder. According to the Newtonian approximation which has been outlined, the 

pressure forces on a body are determined entirely by the local value of 0 ; con- 

sequently, the force on any portion of a body may be evaluated separately, and the 

total force obtained by addition. 

B. CONE 

For a right circular cone of length Jf,       base radius rD    and semi-vertex angle 0, 

we hare 
r» ~ „ r r x 

x — J(,    ss —--,        0 -  const   -  0 
D       tan   G   ' rB        rD       S 

As before two cases must be distinguished corresponding to a i 0„, and a > 0( 

Case 1. a < 0 —ß = n/2. 

From (lö5 it follows that 

?' -j,c' "Q= X"- 2°- "■2a- 

Since i0/dD = 1/(2  tan  Gj.this may be written 

CH   -   «on3   0V   sin   2a. / ,JN 

Similarly, from (19) the axial coefficient is 

Cx   = 2  sinJ0,   +  sin2   a(l   - 3   sin2  i'J. (-3) 
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It is lnt«resting to e^aaine the value of the initial lift curve slope for the cone. 

It is sinply 

'dC. dC 

J*4-f   V
a/ a-o 
*)   = 2 cos2 e. (24) 

For a very slender cone (6„—* 0) this reduces to the slender body result, dCjda =  2. 

This gives the rather surprising result that at small angles of attack the lift co- 

efficient, for a slender diverging body has very nearly the sans value at rwy  high 

Mach numbers as at very low supersonic speeds. This indicates that for a body of 

this type at small angles of attack the lift coefficient is essentially independent 

of Mach number. This conclusion is completely borne out by the Stone-Kopal values 

for cone lift at small angle of attack shown in Fig. 1. 

Case 2. a > Ö,—bu = sin"
s (tan 0,/tan a). 

For this case it follows fro» (?0) that 

C" = cos2 bp   sin 2a 
K + 

71 

71 

2 J        1 
~+ —cos b (tan 6B cot a U cot 0  tan a) 

3r.    " 

and from (21) that 

Cx 
(». 2) 

.T 

[2 sin2 (J,  + «in2 a(l ~ 3 sin2 6,)] 

(25) 

+   cos 3U sin 20  sin 2a. 
ill (26) 

The center of pressure on the cone may be found by taking moments about the vertex. 

If a is the distance from the vertex to the center of pressure, this distance is 

determined by the relation  jf 

Diomen t 

normal    force 
"•     d>     "   \äß< (27) 

Using either (22) or (^5), it is found that 

n 3     "0" 

(28) 
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C. CYLINDER. 

To determine the Newtonian pressures on a circular cylinder, consider ^r. in 

finite circular cylinder in a flow which is inclined at <in angle a to the longitudinal 

axis of the cylinder. In the case of a circular cylinder it is evident that only 

the lower half of the cylindrical surface is exposed to the free-stream (case 2) and 

therefore that P = 0 . Also, since 6=0 and r = ra =  const = rc (the subscript n no 

5    ie used to denote cylinder) for a circular cylinder, it follows from (20) that 

c; = ~sin2a. (29) 

If 45 is used to denote the length of any portion of the infinite cylinder, the 

normal force coefficient is 

C a   * s  sin2 a =  -5 sxn 2 a. (30) 
*      **™s      37i ds r'    ds 

where S   is the normal force on the cylinder length i$   . The axial force on the 

cylinder of oourse is «ero. Also (<KW/Ja)a=a is zero. 

When the effect of centrifugal forces as influenced by the boundary layer is 

considered in addition to the impact (Newtonian) forces, the normal force on the 

cylinder is reduced by ten percent (see Appendix). Thus (29) and (30) become 

Cl - — .xn2 a (3D 
"       n 

and (32) 
4 8 i,        . 

£      = .■? 8in  a> 

"   * ds 

The analysis including centrifugal forces indicates that iuch effects are smeller 

for conventional slender noses such as cones ard ogives at moderate angles of 

attack and thus the pressure forces on such slender noses are satisfactorily approxi- 

mated by the Newtonian (impact force) method. Consequently, the aerodynamic 

characteristics of a cone as given by equations (•*) through (28) are not modified. 
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D. THE CONK AWT» CTUND5R AR* AS SITUATED IN EXPANSION FLOW. 

AU of the expressions (14) through (32) can be interpreted in two ways. For 

truly Newtonian conditions corresponding to V, = ^, it was pointed out previously 

that C  = 0 and \ f/p0 = 0 . In this case the formulas (H) through (30) fire the 

total forces on the entire body, including the surfaces situated in expansion flow. 

If the formulas (14) through (30) are considered as hypersonic approximations, they 
* 

may be thought of as applying only to the forces on the surfaces in compression flow. 

In this case—as discussed in connection with Eqs.  (12) and (13)—it is appropriate 

to consider a non-zero value for the pressure coefficient C      where 

corresponding to the surface areas situated in expansion flow.    Although c      is 

certainly negligible at very high Mach numbers, it would have to be given consideration 

in any attempt to extrapolate the hypersonic approximations down to lower Mach 

numbers.    In view of the extremely approximate nature of such a procedure, it would 

probably be sufficient to use an average value j>     which is independent of  ß   hut 

which may be different on the cone and on the cylinder. 

1.    Cone 

If an average pressure is used, from Eq. (12) the normal force N fon the expansion 

flow areas of the cone would be written 

4<*o /1 _ P.J (* i (** n N.  = 4S il ~ -!ä: / * i  3 r   «n P dP dx> 

where  1     ia the average pressure on the shielded area of the cone, and P ^sin'HtanO /t«na> 
* o " * 

The corresponding normal force coefficient CM    is 

9 2^  "  - 
c      =        '    =     L   .  r&/   --tot' 0   - cot* a. (33) 

"   . „     T w  * V-..U * 



-15- 

Sinilarly, the axial coefficient is found to be 

l(h> - l) 

TCY* r'(H-) (34) 

2. Cylinder 

For the cylinder, tinea ßa = 0, r ■ const, and it in 

the result ie 

if... 

that p ■= p, "const, 

«fSAi-liL^ 
«•*•? 71 r, >* 

(35) 

la order to uee theae equation» approximate valuee for pt     and pt     mist be eetinated 

in any Banner which appear« feasible, possibly fro« tvo-dlnensional gas dynamics and 

low aspect ratio supersonic wing theory, in indication of the smrliw effect of the 

expansion pressures on the lift of a yawed body is obtained by putting p t   " p, * 0. 
D 9 

This is shown in Fig. 7 for a typical body. The actual lift (nonaal force) could be 

expected to be somewhere between the two curves shows in Fig. 6. 
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in. THE CORRELATION OF EXPERIMENTAL RESULTS FOR THE 
SUPERSONIC LIFT ON BODIES OP REVOLUTION 

The previous discussion« have been concerned entirely with approximate methods 

for predicting the Lift of a body of revolution at hypersonic Mach numbers, of the 

order of 10 or 15 and above. Since it is important to have values of body lift 

throughout the complete Mach number range, thle still leaves the problem of estimating 

body lift at all lower Mach numbers. Because of the lack of theoretical results 

applicable to this range of Mach number (2 < *0 < 10) «a study has been made of avail- 

able experimental data and an attempt made to use the indications of these results 

to estimate (interpolate) the body lift in the intermediate range of Mach number. 

For this purpose use is made of the hypersonic approximation for the upper end of 

the Mach number range. This procedure is admittedly almost qualitative in some 

respects, and it is expected that at least some of the results given here will have 

to be modified as more theoretical, and experimental data become available. 

The amount of available systematic supersonic experimental data for jawed bodies 

of revolution appears to be extremely limited. A survey of all supersonic data on 

yawed bodies of revolution shows that there exists no complete systematic series of 

tests (at least with data in usable form) in which body lift is determined as a 

function of angle of attack, Mach number, and body fineness ratio—particularly for 

varying lengths of cylinder behind '.he same nose shape. Except for the very complete 

tests on the A*<?) and the Wasserfall^*) there is a great scarcity of pressure dis- 

tribution data for yawed bodies. This type of information i» quite essential if 

significant comparisons are to be made with any theoretical results. Even for so 

simple a shape as a cone there are but very fragmentary pressure distribution data 

for the yawed condition.(,) Moreover, most of the systematic experimental work in 

the past has been limited to body fineness ratiosKÄ/ds) of 7 or less. (  } The 
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iaportance of tests on bodies of large fineness ratio lies in the indications of the 

discussion below that the lift on the cylindrical part of the body behind the nose 

not only becoaes appreciable, Fig. 7, bat also—at high snough speeds» Eq. (32)— 

the lift is directly proportional to the cylinder length and to the square of the 

angle of attack. While such is to be desired by way of experimental data, by using 

the hypersonic approximation as a guide together with available experimental results, 

it has been possible to obtain a rtther consistent correlation for body lift over 

a wide range of conditions. 

A. LIFT ON A CYLINDER FOLLOWING A CONE OR OGIVE 

From the close agreement in Fig. 1 between the hypersonic approximation and 

ths Stone-Xopal values for cone lift, it is evident that the hypersonic-approximation 

values give a good approxiaation for cone lift even at low supersonic Mach numbers. 

It is instructive to compare, at low Mach numbers, the hypersonic approximation for 

cylinder lift with the experimental values for the lift on a cylinder following a 

cone or ogive. It is possible to extract some rather definite indications in this 

regard from the very complete pressure distribution data for ths German A4 missile 

at angle of attack.(T) The A4 body has an ogival nose followed by a straight 

cylindrical section which extends back to the beginning of the tail surfaces, beyond 

which there is a boattail. If x  i» the distance measured from the fonsird tip of 

the nose and <i    denotes the maximum body diameter (d.  * a.    , the diameter of the 
* s» 3 

cylindrical section), the straight cylindrical section extends from */df=3.5 to */<if= 6.0 

giving a cylinder length of ^.5 calibers. 

The data in Ref. 7 give the local noraal force coefficients C^    as a function 

of position */dg  along the body, for A range of Mach number and angle of attack. 

These local values of t^    have been integrated over the cylinder ssction and givs 

the cylinder lift values shown in Fig. 7.    These results show that at supersonic 



-16- 

speeds the cylindrical portion of A body eontrlbutee very appreciable lift—which 

is rather strongly dependent on angle of attack and Mach number, and emphasize th« 

extremely poor approxiaation given by tba elender body (O-order) thaory—which pre- 

dieta aaro lift on tha cylinder, and by tha linearized (lat-ordar) tbaoriaa «hioh 

pradiet only vary Halted cylindar lift. Figur« 7 alao indicates that for low 

supsrsonie apaadi tha lift on tba cylindar hat alraady exceeded tha hyparaonic- 

approxlaetion value and ia increasing rapidly with Mach number, it high enough 

Nach numbers, yat to ba datarminad, tbaaa curves mat dooraaaa to tha hypsrsonic- 

approxiaation values« In view of tha conatant value of tha normal force coefflcient 

for a cone, for CTample, this auggaata that tha normal force coefficient for a cone 

pins cylindar body seat go through a marl ana with respect to Mach number. It will 

ba aean later that this ia exactly what is indicated by the analysis of available 

experimental data. 

.0 

Tba qualitative notions concerning the lift distribution on a cylinder following 

an ogive are indicated by Pig« 3.  At low supersonic Mach nuabera (w0= 2 to 3) the 

local normal force coefficientC'n   decreases with distance downstream along the axis 

of tha cylinder but givea and integrated lift coefficientCK   which is greater than 

the hyparaonic-approxiaation value. At some higher Mach number, probably in the 

range 3 < k0  < 6,c, reaches its highest valus. At still higher Mach numbers the 

variation of Cj,   along the cylinder axis becomes smaller and smaller, approaching a 

constant condition, and Cn approaches the hypersonic-approxiaaticm value. Th« Mach 

number at which the total body lift becomes approximately equal to the hypereonic- 

approxiaation value will be discussed below on the basis of the indications of ths 

experimental data. 
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B.    THE INITIAL KORHAL FORCE SLOPE FOR MISSILES 
WITH GYLBIDRICAL AFTERBODIES 

A typical missile body 1§ shown schematically In Fig, 9.    It consists of a 

diverging section (noee) of length ib   , which any ba aither a cona or an ogira, a 

straight (cylindrical saction) of length <is and a converging (boattail) nction of 

length 4C  •   The semi-vertex angle of the nose cone, or of the inscribed cone when 

the nose is ogival, is denoted by 6v   .   The total body length is 4,   , the maximum 

body disaster *t   , the maximum cross-section area A^k/4 <£)and the diameter of 

the base   *% •    All of the body aft of the nose, or forebody, nay be referred to as 

the afterbody, and its length denoted by 4A (= <s + \)   .    The afterbody say consist 

of all cylinder, part cylinder and part boattail, or all boattail.    In general, the 

variables upon which the normal force coefficient will depend may be indicated by 

the relation 

(36) 

For the case in which the entire afterbody iw cylindrical (no boattail), it follows 

that lA * "tJS  dt = 4, and the dependency of Cg  becomes 

_        normal   force /     i,, \ /._% 
Cn s  —  = func h)9,f , *9,  a). (37) 

Since most of the available lift data are restricted to small angles of attack, such 

results are employed to greatest adrantage when they are used to evaluate (<iCv/da)a=Q. 

From equation (24) and Figs. 1 and 2 it appears that the normal force on the conical 

nose varies approximately as coa'd^and this suggests use of the peramaterj —-A)    /coa'e  . 

However, moet of the test data fall within the rang«fjn£ 8, < i5*»o the variation of 

coa,6v        from its median value is less than 4 percent and within the accuracy of the 

experimental data.    Furthermore, an investigation of the lift on the cylinder 

J7-I5 
17.1c 
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lmmedie^ely following a oone (using yaw*d con* data (2) and Prandtl-Msyer expansions) 

indicates that th« cylinder lift may vary with coos semi-vertex angle so as to 

counteract the variation of eons lift with 6,  .   For these reasons 6,    is eliminated 

and the experimental correlation is reduced to the for» 

-—= =  funcl   -* *1 =  funcj   4  .   •■«/ (38) 

This correlation has been carried out and yields the results* shown in Fig. 10. 

While the experimental points (not indicated) show considerable scatter, the correla- 

tion is sufficiently good to define individual curvee for oone and ogive nose shapes 

and is considered fairly satisfactory, at least for preliminary purposes. It is 

found tha*- when the length of the afterbody exceeds about 3 diameters (calibers), as 

far as total lift is concerned it makes little difference whether the nose is an 

ogive or a cone. At the lower Mach numbers, the curves go through a mejdi— 

with respect to both afterbody fineness ratio and Mach number. As *«$/ds  becomes 

large ( > 9), the initial normal force slope becomes essentially independent of after- 

body length. At the higher Mach numbers, *0 
> 9, the initial slops becomes equal to 

that given by the hypersonic-approximation for a cone. This follows from ths fact 

that a cylindrical afterbody contributes nothing to the initial normal force slope 

in hypersonic flow—Eq. (30). At hypersonic speeds the ogive normal force is approxi- 

mately equal to the normal force on its inscribed cone, as has been assumed in 

Fig. 10. 

*It will b* noted that the abscissa in Fig. 10 is labeled <A/
d

B    ,  and therefore not 
limited to missiles without boattall. It is pointed out in Section D that the effect 
of boattail may be accounted for as an increment in initial normal fores slope (see 
Pig. 15) which must be added to the values obtained from Fig. 10. When there is no 
boattail, A,ja.  = -t.'u., end the values of Fig. 10 apply direetlv. 

4*  0     5* a 
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C. ADDITIONAL NORMAL FORCE RESULTING FROM ANGLE OF ATTACK 

If the normal force curve slop« wer« independent of a , the normal fore« could 

tnen be obtained immediately fro« Fig. 10. However, except for very small angles 

of attack *nd missilee with no atterbody, th« normal fore« It found to depart widely 

fro« a linear variation with a , and to vary In a manner which ie «or« nearly a 

quadratic function of a. This effect of angle of attack on normal fore« can b« 

«tudlad by Introducing an increment In normal fore« coefficient, AC, ,  defined by 'n 

Cm *Ei\       x a 4 Ac.. (39) 1   V?/-. 
This la illuatrated in Flg. U. Formula (39) is the relation used to correlate 

angle of attack conditions, including the effect« of Mach--number and afterbody length 

at angle of attack. It appear« that, within the accuracy of the data, AC, raries 

a« •iasa so th« results of the correlation are presented in the form ACf/«in
aa. 

Before giving the results of this correlation, it is worthwhile to point out how the 

hypersonic approximations may be ueed to extrapolate from the limited range of con- 

ditions covered by the experimental results to conditions of higher Mach number and 

angle of attack. 

By using the experiment 1 correlation results such as those of Figs. 10 and 11, 

it is possible to obtain experimentally-based estimates of Cn  up to «e = u,  over a 

range of values of <s/ds      end a • These are shown by. the left-hand end of the curves 
(*• £ 4.0) in Fig».12 «nd 13. At the high Mach number end (#, » 
15 or 20, and higher) we have the hypersonic-approximetion values which are independent 

of Maeh number.    As explained in Part II-D, by extending the hypersonic-approximation 

to lower Mach numbers using pt ~ 0  for the surfaces in expansion flow, an    Indication 

is obtained of the limits within which the actual value of CK must lie.    These limits 

are shown as curvee 1 and 2 in Fig. 12, for example.    Since there is no experimental 

data for**0 >    A*31« end moet of the experimental data does rrt extend beyond no =    3, 
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thee» Halt enmt aey be oMd aa A gold« for extending the low Ach naaber nag* 

into tht hypersonic rang**   This is the proeedare which hat been followed to ob- 

tain the resnlta ahoim in Pigs* 12 and 13.   Whila this procedure adaittedly eoo- 

taina certain eleacnta of arhitrarineea, it is believed to yield fairly realistic 

rcsmlts and at laaat gives preliminary working valnee for lift orar a fangt of 

oonditiona for which no other infoiamtion «xiata. 

BEr employing reenlte of tha typ» shown in Figa. 12 and 13, tha correlated 

▼ainee of t£n (Fig. 11) froa taat data have baan extended into tha hypsroonio 

ragion aa shown in. Pig. 14*   Tha hyparaonie-approadaatlon for aeaaa give* C# as 
for tie  low »Rgle of ft tack 

practically a linaar function of angla of attack/rang« (a<26 ) which is or aost 

intaraat.   Tha meager experlaental oona data indieata that thia is also tras at 

low anparaonio spaada.   Tbae tha additional noraal foroa aoaffleiaat $£f     for a 

oona ia sarot at laaat to tha aaaa dagraa of accuracy aa can ba expected froa tha 

experimental data.    Consequently, it follows that tha AC,     raluee in Fig. Ik rtfar 

to tha eylindar only, and for kt *= <*>     ara given by formale (3t)#r 

D.    KPFBCT CF BOATTAIL 

A pralialnary oorralation of available data have shown tha affaot of hoattall 

on noraal fores to ba liaitad to tha initial noraal foroa alopa«(rfC,/<ta)aiat    • 

Mo consistent, pronounced affaot on tha additional noraal foroa, AC,    , was found 

within tha angle of attaek range of tha testa (a £ io°).    It is likelyf however. 

Ä        that data at higher angle» of attaek (a > 10*)     womH show aoae effect of hoattall 

'f        on   AC,,    .    It appears that the initial noraal force elope deoreasee linearly with 

decreaalng haae ratio, di/dt , orar tha noraal range of baee ratioa—0.4 <   dk/dg % !•<>• 

i        The effeete of hoattall angle and type (conical or ogiral) and tha body preoeding 
"i 

the boattail appear to be email eoapared with the effect of the baee ratio.    The 

sei ft: I 
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fb* result» of this correlation art shown by rig. 15* It will be noted that the 

boattail effect if a asadaua at low speeds, and decreases to ssro at about M9 * 9* 

This if la agriaamt with th» slsndsr-body theories (*' > which predict sero lift 

whan djd%  ■ 0, and with tha hypersonic-approximation which iadioataa no boattail 

affaet on tha initial alops paraaeter. It should bs asotloncd, however, that tha 

hypersonic-epproxisetio/i would show an off sot of boattail on Ac, , siaos ths boattail 

portion of tha body would bs coaplstsly shisldsd at angles of attack lass than tha 

it'     boattail angle. 

*.   
I.    OBITER OP PRESSURE 

Qr using tha noraal foroaa which have baaa sstiaatad for any oone-cylinder or 

ogive-cylinder coabin*tioaf it is possibly to tstismts ths corresponding osntar of 

pressure.   Pigun« 10 and 14 give ths noraal foroa on a cons or ogive and tha noraal 

fores distribution along'a cylindar following tha cons or ogive.   Tha cantar of 

pressure of tha oona and ogive srs approximately 0.674fl and 0.53 <0   $ reepectively, 

aft of tha noaa.   Figura 15 gives ths increment in noraal foroa dus to boattail. 

It appsars satisfactory to assuas that this fores acts at tha aid-point of tha 

boattail«   Tha location of tha missile cantar of prsssurs aft; of tha noss tip,  x       , 

is obtained by foraing ths susaation of tha various component» according to tha 

foraula 
C„   Mk 

•«.,        =r— (») 

1\ 
Preliminary checks of this asthod have shown satisfactory agrsaaant with experimental 

data. 
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APFBHDIX 
AHALTSIS Of THE CEHTRIFUGA1 FOPCE EFFECTS 

GBZHUX. DISCUSSION 

The eiaple anoljeia of Newtonian flow Is inooaqpicte inaaauch ae UM effecta of 

eentrifufal forces in the flow around the body bar« been negleeteu. In the flow 

over plan« surfaeea at angle of attack and on oonea at aero angle of attack, eine« 

tha path» of th» air partiolaa orar such aorfaoaa (that la, tha streamlinee on 

the aurfaoes) ara straight Una«, no centrifugal forcee ara preaent. However, 

whan tha surface streamline« ara curved—«a ia tha eaaa for bodies of revolution 

at exgl* of attack, for example—centrifugal forcaa will ba praaant in tha flow« 

For tfaeM flow problems, tha total surface preeeure coafficiant at any point on tha 

body ia equal to tha iapact praaaora ooafficiant ainua tha centrifugal praaaura 

affaat.<*•>»<*•>if c «(p4- p0)/q0 is  tha praaaura ooafficiant dua to tha Nawtonian 

impact praaaura p. , and pe  is tha praaaura raliaf da« to cantrifagal forcaa, than 

tha net praaaura coafficiant Cf  ia eimply 

-pc , (p. rial ~ p C   - C     -L< - -U L£ L2r (41) 

whera tha nat praaaura p   ia apaoifiad by pa Pj-pe.    Also, whan centrifugal forcee 

are praaant tha limit angla ßa denotes the point of zero nat praaaura coafficiant, 

and not tha point of eero iapact pressure coefficient as in the earlier discussion. 

The   Newtonian iapact pressures are evaluated according to the amthode given 

in Part II.    The preeeure relief pt resulting fro« centrifugal forcee le evaluated 

fro» the formula 
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where • = rate of maaa flow through a streamtube at any point on th« 

surface 

V t    *= af fact IT« velocity in a streamtube at any point on the surface 

B = radius of normal curvature of the streamtube at any point on the 

surface. 

^C - width of the streamtube (the height of atreamtube it the body layer 

thickness which is described below) 

In order to evaluate *    and ft  for a body of revolution at angle of attack, the 

particle paths, or streaatubes, on the body surface suet be determined. In the 

hypersonic approximation the shock wave may be imagined to wrap itself around the 

portions of the body which are subject, or exposed, to compression flow. On these 

portions of the body the flow is confined to a thin, high density layer which lies 

on the surface of the body and which, therefore, may be referred to as "the body 

layer." Neglecting friction, the total reaction of the body layer fluid on the 

surface, and of the forces acting on the fluid, must be normal to the surface. 

Hence, the principal normal (normal radius of curvature) and therefore the osculating 

plane at every point on a streamline must be normal to the surface. Thus the 

streastubes are similar to the geodesic paths obtained for the constrained motion 

of a p&rticle on a curved surface. {l4)  At each point along a streamtube the radius 

of curvature is directed along the inward normal to the surface—that is, along the 

vector n . The rate of mass fl^w « at any point on a body layer atreamtube ia 

obtain»! by finding the sum of all the particles which have previously entered the 

body layer along the particular atreamtube. 

Let the curve (, Fig. 16, denote a atreamtube lying on th* surface of the body 

and let the radius of normal curvature of the atreamtube at the point f  on the 

aurfac« be denoted by H   . Let the linea of curvature at /' have the directions 
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given by the unit vectors  t    (maximum radius of normal curvature) and b   (minimum 

radio« of normal curvature), and let the curve C   (that i»f the streamtube) at 

this point sake the angle  y   with    * —Fi£» 16 •    According to Euler's theorem (l,> 

it follow« that 
1       co»a  Y       • inJ  V ^ 

— -  [  +  L  , 
n     /«, A, 

where Ä, la the radius of principal nonaal curvature in the     t -direction, and fi2 
th**> 

in the  b -direction.    For a body of revolution, which will be the case treated here, 

t   is tangent to a Meridian and   b   is tangent to a circular parallel; and the 

meridians and parallels are the lines of curvature on the surface.        #, is the 

radius of curvature of the normal (meridian) section obtained by passing a plane 

normal to the surface and containing the axis of symmetry.     R, is known immediately 

when the profile shape of the body of revolution is specified.   Rt  may be determined 

by means of Msusnier's theorem (see page 505, Reference 15) which shows that 

COS    Ü 

where r is the radius of curvature of a circular parallel and 6 is the angle be- 

tween n and r (that is, 9 is the direction of the tangent along a meridian). 

Prom (43) and (Uk)  it follows that 

1     CO»' Y    Sin1 Y C0* Ö (,r\ 

R "      Rl r 

is the relation for the radius of curvature of the streamline at any point on the 

surface of a body of revolution. 

Consideration must next be given to the velocity ^#. of the flow over the sur- 

faces of the body which are exposed to compression flow. When a free stream par- 

ticle strikes the body layer at a local point P  (see Fig. 16), it loses its com- 

ponent of velocity normal to the surface at this point, while the velocity components 

in the tangent plane remain unchanged. Letting ri„ denote the angle between V0 &nd 
n 
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(n,    is identical with TJ    in Eq.  (3) ), it follows fro« (3) that cot r)B * cos a «in6 - 

• >n a co» 0 ■ in ß      .    The nomal co«ponent of velocity V,  \>» \  i§ logt upon 

impact, and the fluid particle after impact at tht point P    1« Lift with tha 

velocity components alone t   and b   unchanged.    If th« angla between V, and t   Is 

dsnotad by r\t and tha angls between *9 and »    by   TJ6  , It follows from (3) that 

co» T)f «e co» a co» 6 + kin a sin 6  sin ß, ***' 
*°d (Lf) 

co» fy = »in a co» ß. VH'' 
After impact tha partlcla Is left with tha instantaneous velocity components V9  oos \ 

along t and VQ  co» r\b  along b . Tha resultant vsloelty vector is of magnitude 

y,t - »0(co»an, + co.\)t (48) 

It lias In ths    tb-plane and makes tha angla Y   with tha vector t , whara 

co. Y » VJL£L!k . 1 -7 , 

L   \cos V- 

Fro« tha relation tan Y ■ co» nb/co*rlf    it follows that 

t»n Y * 
cot & cos 6 sec S + »in 6 tt,n  ß 

Although a »ingle particle after striking the body would continue its «otion in tha 

tangential plane formed by * and b , t'ie actual flow of a continuous «edit» con- 

strains the particles to follow a streaotube on the surface. In order to evaluate 

the effective body layer etreamtube velocity, v,   ,  s relationship «ust be found 

between V    and V     or V^    Five postulations have bean scrutinized: 
e        i 

Case 1. v
t    

s vo 

This Is the most simple assumption and would overeetimate th« 

oentrlfu^al foroa effects* 

Case 2. V  - \t 

This yields the result that etch particle does accelerate along the 

body layer but the postulation does not give a veloolty gradient in the 

body layer at each point. 

(50) 
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Case 3. V - /*, ^//^ 

According to this method the r«locity of a particle r—aim constant 

after iapact, and results In tha existence of a velocity gradient 

in tha body layer (aaa Raft. 12, 13, 1?, Id, aad 19). 

Case k.V$   = *, II 

Thia relation ia tha raault of the assumption that the thickness of 

tha body layer la of the order of magnitude of that of the boundary 

layer. The Telocity distribution none! to the body surface ia 

considered aa a linear function of the distance fro* the surface 

throughout the body layer. 

Case 5. \   « /<e.ß.a)Vf /2 

upon examination of the pressure distribution as obtained by Saaer (Ia> 

using the method of characteristics for the A-4 nose at Mach numbers 

of 3.24 and 8.00 (see Fig. 17), it appears that the local pressure 

coefficient should decrease slower than any of the abore four oases 

and that the location of zero pressure coefficient should occur at 

the position where the surface tangent is parallel to the free stress 

direction. Since Case 4 yields reasonable pressure variation at the 

start of tha body layer it is used aa a starting point for a fifth 

case. The present fifth cass is then a Modification of Case 4» where 

/(0,£,a)  oust be unity at the origin of the body layer, varies as 

a quadratic along the body layer, and approaches ssro at the position 

where the surfice tangent is parallel to the axis of the free stream* 

As an additional check on the validity of Case 5, ail five cases are 

applied to .flow over spheres (see Fig. IB). The aerodynaadc drags are 

shown in Fig. 19 as the limiting values for the experimental data of 
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Chartera.<,,) Since the «kin friction and base drags for spheres« at 

high velocities are negligibly anil, Case 5 appears beat. 

KXAMPI2 Or aPPUCATION—CTLI1IDER, CASE 5 

The treatment of the hypersonic forces on a cylinder will be based on the 

assumption that the cylinder is infinite.    In the case of an infinite cylinder the 

surface streamlines are all parallel.    This condition makes unnecessary the de- 

termination of the individual streamlines in the calculation of the centrifugal 

pressure effects.   The rate of mass flow in th« body layer at any particular posi- 

tion on the surface of the cylinder, where the centrifugal pressure is desired, is 

PoV<., = PoV^s  9in a cos P = 9B
bBV,t'is "in  > (51) 

where ls  is a specified length of the infinite cylinder. Prom Eq. (45) the radias 

of curvature R  of a streamline on a cylinder is (since /*, s » and 0=0  for a 

cylinder) 

sin  ^ 

The expressionfor the centrifugal pressurr at a point on a cylinder is 

f   Zß  sin > 

Combining (51), (5-2)« and (53), the centrifugal pressure relation may be written 

p.V.r't. sin x  cos (3 sina V ,        -  , 
p    « P* 8 L_ — 1 V      = oJ'J.     ain a cos B sin 7. e i5 *in y r '.   '  ° ° *. 

Employing Case 5, the effective surface velocity for a cylinder is 

(52) 

(53) 

(54) 

>    1   , , .  coa a V§     = I sin1 f 0 c ro» 1 ' 

since V, - {/——    as given by Eq. 49 
' COS '[ 

(55) 
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low Sq. (54) «y be written 

I GO A   Ot I 
pt ■ p0Kj «in  a cos ß sin Y — • »» 8ß   a r* P«yJ •*« a c<>« ß »»■ *P *•* Y «•■ *• (5©*) 

For * cylinder (6 = 0)    Bq. (50) field« 

tan Y ~ ttn   a c0*  ß» 

and (56) beeoaes 

P« * {P0
Ko ■«'" co,,,ß tin'ß B to tinl(l eo,,ß "»'ß« 

(57) 

(5«) 

For a cylinder the lapect pressure coefficient given by Bq. (5) 1ft 

Cp    - 2  sinJ<X «inJß, («ej; 

and the net pressure coefficient it 

C    = C      - fi «= »inaß «inaa (2 - cos'ß). 
'<      a 

Th« aquation defining ß„ is Cp = 0 , or sin'ß. ■ 0 

for all a . 

<6o) 

•   Thus, for a cylinder ß. ■ 0* 

Fro« £q. (6) th« normal fore« coefficient corresponding to th« surface of the 

cylinder «xpos«d to compression flow is 

CM & i a - 2 -t,    fl* c    sin  ß dB =     -£ sin'a (L\\ 

where r  is the cylinder radius and ds *2ra  is the cylinder disaster. 

By comparing this result with foraula (30) for the case in which the centrifugal 

forcei are neglected it is found that 

l_   JMwith   CDitriliiil    fore« 

(Cj*)r<««t*iiUft 

(62) 
0.900 

In Fig. 20 the effect of the various postulated  V    on the noraml force for a cylinder 
* 

is given. 
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